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Field-theoretic study of the nonlinear Fokker-Planck 
equation? 

A Muiioz Sudupe and R F Alvarez-Estrada 
Departamento de Fisica Te6rica, Facultad d e  Ciencias Fisicas, Universidad Complutense, 
Madrid (3). Spain 

Received 4 January 1983, in final form 28 March 1983 

Abstract. A new field-theoretic formulation of the Fokker-Planck approach to non- 
equilibrium statistical mechanics is presented. Starting with the nonlinear functional 
Fokker-Planck equation, a new generating functional is derived. No use of auxiliary 
conjugate fields or response functions is needed. The Feynman rules are deduced, and 
the renormalisation of the theory is carried out. Finally, the renormalisation group 
equation is solved, and scaling laws and critical exponents are calculated, which are in 
good agreement with previous results obtained through different formalisms. 

1. Introduction 

In non-equilibrium statistical mechanics the Fokker-Planck equation has been used 
(Garrido and San Miguel 1977, 1978, Haken 1977 Lifshitz and Pitaevskii 1981) to 
study the dynamics of statistical processes. Equivalently, the Langevin equation serves 
the same purpose: using it as a starting point, field theory techniques (de Dominicis 
e t a f  1975, Bausch er af  1976, de Dominicis and Peliti 1978) (path integral formalism, 
renormalisation group) have been devised to predict the behaviour of a system near 
its critical point. Good results have been obtained (Hohenberg and Halperin 1977), 
which have led us to consider the semiphenomenological Langevin approach as 
physically plausible. As we are going to see, the alternative Fokker-Planck equation 
provides us with a powerful formulation in which field theory concepts can also be 
used. However, in it, the stochastic force which is explicitly written in Langevin’s 
equation is no longer present. This allows us to avoid the definition of auxiliary 
conjugate fields, which are commonly introduced in the most extended formalism 
(Martin er af 1973). As in that formalism, volume divergences will arise, with a specific 
role, when we write the generating functional. Although we are going to study a 
particular model (model A in Hohenberg and Halperin (1977)), that is, the time 
dependent Ginzburg-Landau equation, our formulation can be extended to other 
ones discussed in Hohenberg and Halperin (1977). 

2. Hamiltonian formulation of Fokker-Planck equation 

The Fokker-Planck functional equation, which we are going to analyse, can serve as 
a model for time evolution in ferromagnets, lasers (continuous modes), hydrodynamics, 
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etc (Haken 1977). It has the following explicit form: 

wheref({q(x)}, t )  is the probability distribution for the real order parameter q(x),  Qo> 
0 is the diffusion coefficient and ao,  po>O, yo characterise the drift coefficient. 

As has been previously noted in dimension d = 0 (Muhlschlegel 1978), a useful 
transformation involving the stationary probability distribution leads to a Hamiltonian 
version of (1). This transformation has not yet been extended to dimension d # 0 
with the order parameter defined over a continuum. If we write f = fA’2cp, f o =  
exp{-(2/Qo) ddx[$aoq2 +apoq4 +$yo(Vq)2]} being the stationary probability distri- 
bution, then (1) can be cast in the following Hamiltonian form: 

acplat = - ddXxcp I 
with (abd) zS‘~’ (X  = 0)) 

2 = - @o S2/Sq2 + iQi‘ (a04 - yobq +p04~)*  
(3) 

The transformation f = f:,’2cp has been extensively applied by many authors 
(Graham 1980, Risken 1972). When applied to a space-dependent order parameter 
it gives rise to the volume divergences present in (3) and, depending on the space 
dimension, to ultraviolet divergences. In the older formalism which starts directly 
from (1) those were generated by a Jacobian (Graham 1973, de Dominicis and Peliti 
1978, Bausch et a1 1976). 

As we mentioned above, the volume divergences which appear in (3) are not 
characteristic of our model (Bausch et a1 1976, de Dominicis and Peliti 1978). Let 
us see what is the role played by them: one can define creation-annihilation operators 
a, a* of ‘thermal modes’, which decrease and increase exponentially in time. Following 
the field theory concepts we can write the field, in the Dirac picture, as 

2 ( d )  - i(~oS((gd: + i y o ( A S ‘ d ’ ( ~ ) ) , = o  - $304 S ( 0 , .  

[ a ( k )  exp(ikx - A o t ) + a * ( k )  exp(-ikx + A o t ) ]  
1 ddk 

q(x, t )=-  - 
( 2 ~ ) ~  5 M k )  (4) 

where A o ( k )  = a o + y o k 2 .  Obviously the conjugate momentum is T = -iQOS/Sq, with 
the following commutation rule: [q(x), ~ ( x ‘ ) ]  = iQos‘d)(x -x’). In terms of these 
operators the unperturbed Hamiltonian (Po = 0) has a simple form: 

Ho= (2/Qo) J ddk a * ( k ) a ( k ) .  ( 5 )  

The effect of the volume divergences, up to this order, has been to cancel with 

ensures the correct ordering of the a, a * operators in the Hamiltonian. These volume 
divergences cancel exactly after the ordering has been attained. This is not the first 
time that creation-annihilation operators have been introduced in this or a related 
context (Guyer 1982). 

The formalism introduced (let us call it ‘canonical’) can be used to study the 
correlation function perturbatively. Instead of doing that, we have preferred to 
introduce a functional formulation. 

the ‘vacuum energy’ of the field. In higher orders, the :poq 2 S ( d )  (x =0 )  term in (3) 
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3. Functional formalism, perturbation theory 

The classical Lagrangian associated to (3) may be written as (4  = d q / d t )  

9 ( q ,  4 )  = &,'4 + iQ,' ( a ~  - yoAq + 2 ( d )  
3)2 - &OS I$ + &(AS lx"; ) x  =o - ?PM S(o,. 

(6) 

From this we can define the partition function or generating functional as a path 
integral: 

Z ( J ) = N I  [dqlexp( -1 ddx dt[Ziq,4)+Jql) (7) 

where J (x ,  t )  and N are a real source and a normalisation constant, respectively. This 
generating functional is not the same as the one we would have obtained directly 
from (1) following the work pioneered by Graham (1973) and usually employed in 
the literature (Bausch et a f  1976, de Dominicis and Peliti 1978); in it, there is a linear 
term in the time derivative of the order parameter which is absent in (7) (see e.g. 
equation (2.41) in Graham (1973)). This allows us to eliminate auxiliary fields and 
to use field theory techniques in close analogy with the procedure followed in the 
static theory (BrCzin et a1 1976) and eventually leads to some simplifications. It also 
has important consequences if one would try to study the discretised version of (7) 
because there would be no coupling between the 4 and Aq terms. 

In terms of the generating functional (7) the N-point correlation functions can be 
obtained as derivatives with respect to the source J(x,  t ) :  

(q(x1, tl). * .  q(xN, fN))=[aNz(J)/(SJ(xl,  t l ) .  * * SJ(xN, tN))11=0* (8) 

Calling Zo(J) the free generating functional, which has the unperturbed Lagrangian 
(Po = 0) in the action, and denoting byY1 the interaction Lagrangian which has the form 

(9) 1 2 6  2 ( d )  ~ I ( ~ ) = T P O ~  /Q+(ao4-yoA4)Poq3/Q-tPo4 6(0)  

we can formally express the partition function as 

From this equation we calculate the expansion of the correlation functions in powers 

The path integral corresponding to Zo(J) is gaussian and thus can be easily 
of P o .  

integrated (Abers and Lee 1973) with the following result: 

Zo(J) = N o  exp 4 J ( x ,  t)Go(x -x', t -t ' )J(x ' ,  t')ddx dt ddx' dt'. 

The free propagator in the above expression, written in momentum space, is 

(11) I 
do(k ,  = Qo/[w + (ao + yok '1'3. (12) 

The relevance of this propagator in dealing with parabolic type equations has been 
recently pointed out by Faris and Jona-Lasinio (1982). 
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4. Feynman rules 

A careful calculation, up to second order, of the perturbative series in Po for the 
correlation function shows that the Feynman rules associated to it reduce to considering 
just one line, corresponding to (12) and the two types of vertices drawn in figure 1.  

Factors Vertices 

Figure 1. Types of vertices. 

The effect of the volume divergences is to eliminate all the graphs with closed 
loops like the one drawn in figure 2. So the theory is free from volume divergences 
and closed loops of that kind. The expressions of the vertex functions with two and 
four external ‘legs’ are given to second order in Po in (13) and (19). 

Figure 2. Closed loops cancelled by the volume divergences. 
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x d " ( k , o ) G o ( k ' , o ' ) & o ( P - k - k ' , n - w  -CO').  (18) 
We have so far written the subscript '0' to denote bare parameters. Graphically we 
can represent the expression (13) as is shown in figure 3 (permutations of the lines 
have not been represented). 

k ' ,  w '  
n 

p - k - k ' ,  Q - w - w '  

P t n  h ' , w '  ihhc + p , R  p-i k ' , w '  

p - h - k ' ,  R -  U - U '  p - k - k ' ,  R - U - W  

L 
k '  I 

ddk dw 
18(Pl .)=I p [ A o ( k ) + A o ( P  + k ) l 2 G O ( k , 4 G O ( P + k ,  n+oJ). (22) 

by 2 perm we represent in (19) two integrals in which p1 + p 2 ,  ill + f12 are been replaced 
by pl +p3, 0, + 0 3  and pl +p4, SZ, + f14 respectively. Graphically, (19) is shown in 
figure 4. 
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Figure 4. Four-point vertex function to order one loop. 

Note that although there is a fourth power of a momentum in the denominator 
of (12), it does not not assure us that this theory will be less divergent than its static 
limit ((p:) is. In fact, it is superficially more divergent. Most of the expressions given 
above have no meaning a sufficiently high dimension ( d  5 2). It has to be understood 
that all the propagators are properly regularised, for instance, we can introduce a 
cut-off A for the momentum and write the free correlation function as 

5. Divergence degree 

The divergence degrees of the ‘worst’ integrals (( 18) and (22)) in ri2) and ri4’ are S = 4 
and S = 2, that is, quartic and quadratic repectively, in d = 4. Clearly, these graphs 
are more divergent than the corresponding ones in (p: (Amit 1978, BrCzin er al 1976) 
(where they are S = 2 and S = 0). This fact is a little puzzling because the fluctuation- 
dissipation theorem (Ma 1976) relates the static and dynamic vertex functions through 
an integral, that is 

and from here we are induced to believe in a similar divergence degree for both 
theories. As we are going to see, this is the case: the vertex of type I1 (see figure 1) 
contributes to absorbing those divergences of the dynamical theory which are larger 
than the corresponding ones in the static theory. At this level, both the dynamical 
and the static theories do have the same superficial degree of divergence. 

The strategy along the renormalisation will be to follow as closely as possible the 
steps in the (p: theory. This can be achieved at each stage by means of the FDT (24). 

The role of the FDT in renormalisation has been investigated by Deker and Haake 
(1975) for a time-dependent but seemingly or not explicitly space-dependent order 
parameter where no divergences occur. Here we point out the importance of the FDT 

in renormalisation for a space-dependent order parameter where divergences really 
arise. As in their work it allows us to formulate the perturbation theory in terms of 
just one propagator (‘free’ two-point correlation function). 



Field-theoretic study of nonlinear FP equation 3055 

We are going to renormalise the theory in its critical dimension (d  = 4). In it, the 
divergence degree of the ‘worst’ graphs (those with all the ‘wavy’ legs of type I vertices 
coupled to internal lines) is independent of the perturbative order. This can be easily 
seen from the expression 

( 2 5 )  

where E is the number of external ‘legs’ and n is the total number of vertices. 
In dimension d = 4 the two-point vertex function I“’) is quartically divergent in A 

and the four-point vertex function r(4) is quadratically divergent. dr(’’/dp’ and 
dr”’/dfl’ are both logarithmically divergent. We will need, then, four renormalisation 
conditions for ao, Po, q ( x ,  t )  (as in the static theory) and Qo (this is the dynamical 
renormalisation). 

We have preferred to follow the presentation of the renormalisation procedure as 
is done in the static case by BrCzin et a1 (1976). 

S = ( n  - E / 2 +  l)d -4n + E  + 2  

6. Mass renormalisation (one loop) 

The expression (13), to first order in Po, shows a quadratic divergence which comes 
from I I  (14); as this is of the same kind as the corresponding static integral, we follow 
BrCzin et a1 (1976) and Amit (1978) in order to absorb it in a redefinition of the 
‘mass’ ao. Let us define a renormalised a1  as 

(26) 

This is the same definition that is carried out in the static (p4 theory, as can be easily 
seen by integrating Il (14) over the internal frequency. Note that we are not using 
here the usual field theory parameters: this will have an important consequence in 
the dynamical renormalisation. Upon introducing (26) in (13), to first order, we find 

(27) 

ao = a 1 - 3P”Il. 

r(2)(P, R, a1) = [Gob, 0, al)lrl 

and thus the two-point vertex function is finite to the order of one loop. 

7. Coupling constant renormalisation (one loop) 

The integral I 8 ( p ,  fl) in (22) is quadratically divergent in d =4. On the other hand, 
the coupling constant in (p: is only logarithmically divergent, so we hope to find some 
cancellation between the integrals which are quadratic in A in (19) (these are precisely 
the last two terms in (19)). But first let us introduce in (19) the renormalised ‘mass’ 
a l ,  (26): this gives us new term, which is proportional to Il and thus also quadratic 
in A. This term together with the last one in (19) (also proportional to 11) absorbs 
the quadratic divergence in I s .  To see this, note that Il can be written as 

(28) 

as can be shown by integrating I I  over frequencies, shifting the momentum and using 
the identity 

311 = $QdIdp1 +PZ, 0) + 2 perm1 
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In this way, we can write for r(4’, after first-order ‘mass’ renormalisation, 

P4’(pi, ni)=6(P,/Qo)[Ai(Pi)+. . + A I ( P ~ ) I - ~ ~ ( P ~ / Q : ) [ ~ I ( P I ) + .  . . + A i ( ~ 4 ) 1  

[ 1 6 ( ~ 1  +PZ, 01 + % I  + 2 P~~~I-~~(P:,/Q~)[AI(P~)+AI(~Z)I 
X [ A ~ ( P ~ ) + A ~ ( P ~ ) ] [ ~ ~ @ I + P Z ,  n i+%)+zPermI  

-18(Pt/Qg)[Is(Pi+Pz, a i + n z ) - I s ( P i + P z ,  0 ) + 2  Perm] (30) 

with Al(p) = a i  + yopz .  
The difference of integrals in the last term is finite in d = 4 .  Each of them is 

quadratic so, as usual, the difference is naively logarithmic, but a shift in the frequency 
shows that it is indeed convergent. 

Up to this point, expression (30) is logarithmically divergent: it is the second term 
where the divergence is present. This can only be absorbed by a redefinition of the 
bare coupling constant Po. The static cp:-theory expression, written as a dynamical 
one (by including a frequency integral), which renormalises the coupling constant, is 

(31) P o  = P1 + 18P?QoI6(0,0).  

The substitution of this formula in (30) gives a Z6(0, 0) term which will subtract the 
logarithmic divergence of 1 6 ( p ,  a). That is to say, rI4’(pi, ai; a l ,P1)  with cy1, pi  
given by (26) and (31) respectively, is finite in d = 4. Note that in d = 3 it would not 
be necessary to introduce P I ,  as I6 would be convergent. 

8. Mass renormalisation (two loops) 

In I ‘ (2) (p ,  a) to second-order (13) for d =4 ,  there are terms with quartic (Is, I?), 
quadratic (I4, 11) and logarithmic (I,) divergences in A, in contrast to cpl, where the 
two-point vertex function to second order is, at most, quadratically divergent. Our 
experience tells us that there must be some cancellations between the quartically 
divergent terms. But, first, let us discuss the second-order ‘mass’ and coupling constant 
renormalisations in (13). 

The static cp: expression which defines the renormalised mass up to second order 
is written in an appropriate dynamical fashion (including o integration) as 

a o = a 1 - 3 P d i +  18(Pi/Q0)14(0,0). (32) 

The replacement of a. by a in (13) has several consequences: (i) it gives a quartically 
divergent term (I?); (ii) the second (with 11) and the third terms (with 111~) disappear: 
(iii) the contribution of 14(0, 0) from (32) absorbs the quadratic divergence in 14(p, a), 
leaving it as logarithmic. 

The renormalisation of Po, (31) does not give any new term, because (32) has 
eliminated from (13) all the linear terms in Po and at order P: the bare coupling 
constant can be substituted directly by P I  (the difference would be of order P 3 ) .  

Now we are in a position to see how the quartically divergent terms in (13), after 
mass renormalisation, manage to absorb these divergences among themselves. First, 
note the equation 

31: = 0 O 1 I 5 ( p ,  0 )  (33) 
as can be shown by integrating IS over internal frequencies. This procedure gives us 
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in (13) a difference 1 5 ( p ,  a) -I&, 0) similar to the one we found in the last term of 
(30). As there, the difference is able to reduce the divergence degree by four units, 
leaving us with a logarithmic integral. In fact, one can prove after a lengthy but simple 
calculation that the following equation holds: 

(34) 

Before going on, let us write at this level which is the expression for 1‘(2), (13), in 
terms of al, PI. By using (34), it is 

I s h  R)-I5(P, 0 )  = -n213(P, a). 

r(2)(p, n; al, pl) 
= 6i1@, ai)-12(P:/Qo)Ai(p)[I4(p, 0; a1)-14(0,0, a111 

+ 6(P:/Q~)(n2-A:(p))13(p, 0; ai). (35) 

9. Field-strength renormalisation 

If we were in d = 3, equation (35) would be the final finite expression of the two-point 
vertex function. However, in d = 4, both 1 3 ( p ,  0; al) and the difference 1 4 ( p ,  n; al)- 
14(0, 0; a l )  are still logarithmically divergent. This is a situation rather similar to the 
one we find in q: after coupling constant and ‘mass’ renormalisations. There, 
the problem was solved by renormalising the field multiplicatively: this implies a 
multiplicative renormalisation of r(2) that absorbs logarithmic divergences. Following 
closely the static q: procedure, we define the renormalised stochastic field as 

q R ( X ,  t )=Z-12q(X, t )  (36) 
where 2, using our parameters, can be written as a dynamical expression like 

z = 1 + ~ ( P : / Q ~ Y ~ ) W ~ ( ~ ,  0 ;  a l ) / a ~ 2 ~ p = 0 .  (37) 
As usual, the integration of 14(p ,  0) over internal frequencies shows that this is exactly 
the static expression. The ‘field strength’ or ‘wavefunction’ renormalisation (36) allows 
us to write for the renormalised two-point vertex function 

(38) r%, 0; a l ,  pl) =zr(2)(p, n; al,  pl). 
Using (37) in (38) we find for the renormalised rk“ the following form: 

rk2’(P, 0; a19  P1) 

= 6,’ (P, 0; ai)-  12(P:/Qo)Ai(~) 

The field strength renormalisation (36) affects also the definition of the renor- 
malised constants a l  and 61. Remember that in the static case a t  was just the value 
of rk?’ for p = 0 and p1 was rk:’ for p i  = 0, i = 1, . . , 4, so equation (38) forces us to 
introduce a2 and p defined as 

a2 = zal p =z2p1. (40) 



3058 A Mun‘oz Sudupe and R FAlvarez-Estrada 

This redefinition of the parameters absorbs in (37) a divergent term, like a 1  In A, 
leaving as p . . . the Al(p). . . factor in the second term of (39) (see (41)). The 
redefinition of P1 does not affect ra“ to order one loop, that is to order P’ ,  because, 
from (40) and (37), P =P1+O(P:). 

The expression we get for ra“ (39) by means of the new renormalised parameters 
(40), that is, after all the static cp: renormalisations have been accomplished, is the 
following: 

2 

r?(p, .n; a’, P )  

with Az(p) = a’ + YOP’. 

10. Dynamical renormalisation 

In (41), the last term is still logarithmically divergent and has no analogue in the static 
cp version of the theory. Whatever the dynamical renormalisation counterterm that 
absorbs this divergence will be, its static ‘limit’ (via the FDT theorem) must vanish. It 
seems reasonable that it would be something proportional to the difference 0’ - A;( p ) .  
Moreover, if we note that the following integral vanishes: 

we are readily convinced that this is the kind of counterterm required to make (41) 
finite. In fact, (42) suggests a vanishing static ‘limit’ for a counterterm proportional 
to n’-A:(p). The question that has to be formulated now is the following: what 
kind of redefinitions of the parameters in Go’ ( p ,  R; a2)  can bring such a counterterm? 
It is evident that a simple redefinition of Qo alone would bring just a R2 +A:@) term, 
and that this is not appropriate: it will be necessary to redefine all the parameters 
appearing in G i ’ ( p ,  R;  a’) in order to get it. This is a consequence of the particular 
form of the parameters that we have used: they do not coincide with the ones commonly 
introduced in the literature (r and g )  (de Dominicis et a1 1975, Bausch et a1 1976), 
which are related to ours by P =gQ/12, a =rQ/2, y = Q/2. If r, g have been 
introduced, it will only be necessary to redefine Q, the diffusion parameter. Instead 
of doing that, we renormalise in our case a2,  yo and Qo in the following way: 
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It is easy to adjust SQ so that the divergence present in the last term in (41) will 

(45) 

Introducing this in I$) expressed in terms of the renormalised a,  P,  y and Q, one 
gets the final form which is finite in d = 4. This is 

be cancelled. Let us define 

SQ = 6p2{z3(o, 0; a, Y, 0) + r-’[ai4(p, 0; e, Y, Q ) / ~ P ’ ] , = ~ ) .  

rk2’(p, a; a,  P,  7, Q) 

P 2  
= 6,’ ( p ,  n; a,  Y, Q) - 12 7 A@) Q 

(46) 

This can be checked by integrating its inverse over the external frequency n in 
order to obtain the corresponding static renormalised two-point function (recall (24)). 
One can show that the integration of just the one-particle irreducible diagrams, with 
their corresponding external ‘legs’ (this is: a global factor (a2 + A’(P)) -~) ,  gives exactly 
the corresponding renormalised diagrams of the static cpl theory. 

P 2  + 6  2 [n2-A2(p)I{13(~,  n)-I3CO, O ) ) m , n ~ .  Q 

11. Normalisation conditions and critical theory 

One could have introduced from the beginning the renormalised stochastic field qR(X, t )  
and the counterterms in the Fokker-Planck equation, writing it as (using (36) and 
a o = a + S a , P o = P + S P , e t c )  

The renormalisation constants Sa, SP, Sy, SQ and 2 can be determined by imposing 
that the two-point and four-point vertex functions take the following values for 
vanishing external frequencies and momenta: 

rg’(0,O) = a 2 / Q  (48) 

(49) r(4) R ( 0 , .  . . , 0 ) = 2 4 p a / Q  -864(P2~’/Q2)17(0, 0) 

(51) 

The values of Sa, SP, Sy ,  SQ and Z that one gets from these expressions coincide 
with those introduced in the preceding sections. 

In the critical theory ( a  = O), one cannot impose values for the vertex functions 
at p = 0 = 0, because of the infrared divergences, so one is forced to fix the values of 
the vertex functions at p ,  R to be different, in general, from zero. This is equivalent 
to fixing a scale for the external momentum and frequency. Then the normalisation 



3060 A Mun’oz Sudupe and R F Alvarez-Estrada 

conditions can be written, in the critical theory, as 

r E ’ ( p  = a= 0; a = 0, P, y, Q) = 0 

where p is a momentum that fixes the scale. The symbol SP means as usual (Amit 
1978) pipi  = (p2/4)(4Sii - l ) ,  i, j = i, 2, 3, 4. 

12. Renormalisation group (critical theory) 

In this section we derive scaling laws and critical exponents using the preceding field 
theory approach to the renormalisation group equations. The model that we are 
studying here has been previously treated by other authors through different formal- 
isms (Ma and Mazenko 1975, Yahata 1974, de Dominicis et a1 1975), so we are not 
presenting new results here but we are just showing that these are similar to the 
previously obtained ones. 

As is well known, the renormalisation group equations can be derived from the 
independence of the bare theory on the external momentum scale introduced in fixing 
the normalisation conditions (52) for a critical theory. As we have seen (38) the 
relation between both the bare and the renormalised vertex functions with N external 
‘legs’ is the following: 

(53) 

Note that a. is no longer present in the right-hand side. This is because it is determined 
as a function of Po, Qo and A (see (32)) in order to produce a renormalised theory 
with zero ‘mass’ Q = 0. In the same way, neither yo nor y is present in (53): the 
reason is that we have fixed y to be y = Q/2, in order to obtain a renormalised theory 
with unit coefficient in the p 2  term of the static free propagator (calculated through 
the FDT). This fixes the yo as a function of Po, Qo and A. 

Obviously the derivative of r(*) with respect to In p vanishes, so, using (53), we 
can write the renormalisation group equation as 

(54) 

N/2 (NI  rkN’(p, a; P,  Q, P )  = 2- r (e ,  a; PO, Qo, A). 

(palap + woa/aP +5QQa/aQ-~Nt72)rkN’(p, a; P,  Q, p ) = O  

wi3 = p (@lap )Pu,Qo.A 

50 = CL (a In Q/ap ) B , , Q ~ A  

where we have introduced, as usual, the Wilson function: 

( 5 5 )  

and the exponent functions 

t7z = CL (a In zlap )Po,Qu,A. ( 5 6 ~  b )  
We will check that the expressions for WO ( 5 5 )  and 7, (56b)  are the same, as was 

(56a)  will to be expected, as their corresponding static expressions. However, 
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define a dynamical critical exponent associated to critical relaxation times. For the 
sake of brevity we will only include in an appendix the calculation of to. 

The results, to the first relevant order in d = 4, are 

We are now going to write the solution of (54) and derive the dynamical scaling 

(60) 

where d r = N  + 6 - 2 N  and F(.) is a dimensionless function. From (60) and the 
renormalisation group equation (54) it can be shown that F ( p / p ,  fl/Qp2, p )  takes 
the form 

laws. By dimensional considerations (Bausch et a1 1976) we can write, 

rk”(p, a; P, Q, P )  = Qpdr(p/p, WQcL2, PI 

where $, p and 6 satisfy the following equations: 

with the initial conditions fi  (1)  = p ,  p(1) = p, b(1) = Q. Taking into account (61), 
the solution rk” of the renormalisation group equation (54) can be written as 

which establishes the scaling form of the N-point vertex function under a change in 
the external momentum scale p -,PIP. 

If we denote by p* the fixed point of WB, that is WD(p*) = 0, it is evident from 
(62) that when p -, 0, p(p)+p*. In this limit the scaling form (63) becomes simpler, 
the integrals can be explicitly done, and we obtain 

where we have defined [* = &(p*)  and q* = qL(P*). Thus, in the critical region (p -+ 0) 
equation (64) is the scaling form of the N-point vertex function; in particular, the 
two-point correlation function scales in the critical region as 

&(P,  = [rk2)(p, 0 ) l - l  

where we have introduced the dynamical critical exponent t defined as usual (Ma 
1976) as z = 2+[*. 
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3. E expansion 

We have so far worked in the unphysical dimension d = 4, where the fixed points of 
the theory are trivial ( p *  = 0) .  It is useful, in order to obtain the critical exponents 
in a physical dimension d = 3, to consider the expansion of the critica exponents in 
powers of E = 4 - d and p.  To first order this can be easily done by introducing the 
dimensionless coupling constants t' and u o  defined as 

From the normalisation condition (52) for r:' and the regularised propagators 
(23) we find to order v i  the relation 

From here, upon integrating as in the appendix, we obtain in first order 

W, = - E V  -t (9/4.rr2)v2/Q. 

The fixed point U *  can be easily calculated from (69). The result is 

v * = (4.rr2Q/9)&. 

This gives for the critical exponents &* and q * the well known expressions 

&* = &E 2[6 In ($) - 11 
*-L 2 q - 54E . 

Both expressions coincide with previous static (q *) and dynamic ([*) calculations. 

14. Conclusions and outlook 

We have so far presented a new functional formulation for the stochastic approach 
to non-equilibrium statistical mechanics which uses as starting point the Fokker-Planck 
equation, and its stationary solution. The most extended formalisms up to now 
introduce auxiliary fields and deal both with response and correlation functions, which 
are inessential in our formulation. This fact has several consequences: ( i )  the Feynman 
rules are simpler in our formulation; (ii) the static renormalisation procedure can be 
followed very closely. Moreover, the new generating functional (5) that we introduce 
has a purely quadratic dependence on the time derivative of the stochastic field, while 
the ones used by other authors mixed both a quadratic and a linear dependence. This 
fact also has important consequences: it is possible to write a discretised version of 
the generating functional (5) which may be useful for computational purposes and, 
moreover, enables us to obtain correlation inequalities of the same kind as the ones 
found in the discretised (p4 theory (Ising model). In particular, the kinetic part of the 
Lagrangian leads to a ferromagnetic coupling between nearest neighbours in the time 
lattice. 
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Appendix 

We present here the evaluation of the exponent function .& defined in ( 5 6 ~ ) .  Writing 
an expression analogous to (45) with p # 0, R #  0 (as we are in the critical theory), 
the calculation of Q as a function of Qo, Po, A and p reduces to the computation of 
two integrals, namely: 1 3 ( p 2  = p 2 ,  R = y o p 2 )  and ( a 1 4 ( p ,  O)/ap2),2=,2,n=o, properly 
regularised according to (23), i.e. to the evaluation of gaussian integrals. It is useful 
to consider the formula 

Instead of calculating 1 3 ( p ,  R) or ( a 1 4 / a p 2 )  directly, it is easier (Amit 1978) to 
compute their derivatives with respect to (p /A) '  and integrate the final result in the 
limit A + 00. 

We find the following results U = (@/A)': 

and from here, upon integrating, 

For ( a I , / a p 2 )  we find in the same way 

1 d 1 4 ( p 2 = p 2 , 0 )  - 6 Q i  1 p 
In -. - 

Y o  aP * .\+a 4 ( 1 6 ~ ~ ) ~  Y O  A 

This is the same expression that is obtained in the static 9' theory for the critical 
exponent q,. 

Finally, adding the partial results (A3) and (A4), we get 

We are now ready to evaluate, to using ( 5 6 ~ ) .  The result is 

= 2 4 ( 1 6 ~ ~ ) - ~ ( @ ~ / Q ~ ) [ 6  In($)- 13. (A61 
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